Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Vet Res Commun ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598117

RESUMO

The global presence of SARS-CoV-2 in household pets is acknowledged, yet documentation remains scarce, leaving many regions unexplored. Thus, our study sought to fill this gap by investigating SARS-CoV-2 presence in dogs visiting veterinary clinics during the third pandemic peak in eastern Colombia. We collected and analyzed 43 oropharyngeal and rectal swabs using real-time PCR assays targeting the Envelope Gene of SARS-CoV-2. Out of these, two dogs tested positive, indicating an infection rate of 4.7%. Further examination through complete sequencing and phylogenetic analysis revealed the lineage B.1.621 for the SARS-CoV-2 genome. Consequently, our study unveils the first documented cases of Canis lupus familiaris infected with the Mu variant of SARS-CoV-2, the variant with the most death burden during the whole pandemic in Colombia. Remarkably, these cases presented mild and reversible respiratory and gastrointestinal symptoms, or no clinical manifestations at all. This sheds light on the virus's interaction with our four-legged companions, offering valuable insights into its transmission dynamics and potential effects on animal health.

2.
Heliyon ; 10(5): e27452, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463823

RESUMO

The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.

3.
PLoS Negl Trop Dis ; 18(2): e0011981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377140

RESUMO

BACKGROUND: Chagas disease, affecting approximately eight million individuals in tropical regions, is primarily transmitted by vectors. Rhodnius prolixus, a triatomine vector, commonly inhabits in ecotopes with diverse palm tree species, creating optimal conditions for vector proliferation. This study aims to explore the transmission ecology of Trypanosoma cruzi, the causative parasite of Chagas disease, by investigating the feeding patterns and natural infection rates of R. prolixus specimens collected from various wild palm species in the Colombian Orinoco region. MATERIALS AND METHODS: To achieve this objective, we sampled 35 individuals from three palm species (Attalea butyracea, Acrocomia aculeata, and Mauritia flexuosa) in a riparian forest in the Casanare department of eastern Colombia, totaling 105 sampled palm trees. DNA was extracted and analyzed from 115 R. prolixus specimens at different developmental stages using quantitative PCR (qPCR) for T. cruzi detection and identification of discrete typing units. Feeding preferences were determined by sequencing the 12S rRNA gene amplicon through next-generation sequencing. RESULTS: A total of 676 R. prolixus specimens were collected from the sampled palms. The study revealed variation in population densities and developmental stages of R. prolixus among palm tree species, with higher densities observed in A. butyracea and lower densities in M. flexuosa. TcI was the exclusive T. cruzi discrete typing unit (DTU) found, with infection frequency positively correlated with R. prolixus abundance. Insects captured in A. butyracea exhibited higher abundance and infection rates than those from other palm species. The feeding sources comprised 13 mammal species, showing no significant differences between palm species in terms of blood sources. However, Didelphis marsupialis and Homo sapiens were present in all examined R. prolixus, and Dasypus novemcinctus was found in 89.47% of the insects. CONCLUSION: This study highlights the significance of wild palms, particularly A. butyracea, as a substantial risk factor for T. cruzi transmission to humans in these environments. High population densities and infection rates of R. prolixus were observed in each examined palm tree species.


Assuntos
Doença de Chagas , Rhodnius , Triatominae , Trypanosoma cruzi , Animais , Humanos , Árvores , Trypanosoma cruzi/genética , Colômbia/epidemiologia , Doença de Chagas/epidemiologia , Tatus
4.
J Mol Diagn ; 26(5): 323-336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360211

RESUMO

Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.


Assuntos
Doença de Chagas , Coinfecção , Sequenciamento por Nanoporos , Trypanosoma cruzi , Humanos , Animais , Genótipo , RNA Ribossômico 18S/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética
5.
Parasit Vectors ; 16(1): 458, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111024

RESUMO

BACKGROUND: Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. METHODS: A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. RESULTS: The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. CONCLUSIONS: This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.


Assuntos
Doenças do Gato , Coinfecção , Doenças do Cão , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Sequenciamento por Nanoporos , Humanos , Animais , Cães , Gatos , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Leishmania/genética , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/veterinária , Proteínas de Choque Térmico HSP70/genética
6.
Sci Rep ; 13(1): 16973, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813873

RESUMO

Wetlands represent key ecosystems due to their remarkable biodiversity, ecological functions and multiple ecosystem services provided. In Colombia, there are 31,702 wetlands, 13 of which are in Bogotá, capital of the country. Despite the fundamental socioecological support of these aquatic ecosystems, a tremendous loss and degradation of these ecosystems has been observed due to anthropogenic perturbations. Therefore, the aim of this study was to describe the status of seven Bogotá wetlands with variable anthropogenic interventions by measuring organoleptic, physicochemical, and microbiological parameters, using commercial kits, highly sensitive equipment, and next-generation sequencing of the 16S- and 18S-rRNA genes. Our findings describe the status of seven wetlands with different anthropogenic burden in Bogotá-Colombia where physicochemical and microbiology signals of contamination were observed. Additionally, some profiles in the composition of the microbial communities, together with certain physicochemical characteristics, may represent an insight into the environmental dynamics, where Beta Proteobacteria such as Malikia represent a potential keystone in aquatic ecosystems impacted by wastewater effluent discharges; the presence of nitrates and phosphates explain the abundance of bacteria capable of oxidizing these compounds, such as Polynucleobacter. Moreover, the presence of specific prokaryotic and eukaryotic organisms, such as Clostridium, Cryptococcus, Candida, and Naegleria, reported in one or more of the wetlands assessed here, could represent a possible pathogenic risk for human and animal health. This study performed a complete evaluation of seven Bogotá wetlands with different anthropogenic impacts for the first time, and our findings emphasize the importance of maintaining continuous monitoring of these water bodies given their remarkable ecological importance and potential spill-over of several pathogens to humans and animals.


Assuntos
Microbiota , Áreas Alagadas , Animais , Humanos , Ecossistema , Colômbia , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Bactérias/genética
7.
Parasitol Res ; 122(10): 2445-2450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530869

RESUMO

Dirofilariasis is a mosquito-borne disease caused by Dirofilaria parasites, affecting both wild and domestic animals, including humans considered as accidental hosts. Dirofilaria repens is the principal causative agent of dirofilariasis in the Old World, with increasing reports of the parasite in countries where it has not been previously identified, due to several factors such as the expansion of mosquito vectors' geographical distribution. By utilizing newly designed primers for molecular detection and confirming through next-generation sequencing, here, we report the first plausible cases of D. repens in dogs from Colombia. Our results support the classification of this species as an emergent pathogen in the Americas. Finally, we encourage an increase in diagnostic and surveillance efforts to prevent and control the current and future dirofilariasis cases in this region.


Assuntos
Dirofilaria immitis , Dirofilaria repens , Dirofilariose , Doenças do Cão , Animais , Cães , Humanos , Dirofilariose/diagnóstico , Dirofilariose/epidemiologia , Dirofilariose/parasitologia , Dirofilaria repens/genética , Colômbia/epidemiologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Mosquitos Vetores , Dirofilaria immitis/genética
8.
Ann Clin Microbiol Antimicrob ; 22(1): 56, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420198

RESUMO

Viral respiratory infections may predispose to co-infections with other pathogenic microorganisms. In this study, pathogenic respiratory bacteria were detected using commercial kit Allplex™ Respiratory Panel 4 from nasopharyngeal samples from individuals suffering respiratory symptoms with and without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients without respiratory symptoms were included as controls. Haemophilus influenzae and Streptococcus pneumoniae were detected from 12 patients (6%) in both, patients with respiratory symptoms (including hospitalized) (n = 6) and individual without symptoms (n = 6). Pathogenic bacteria possibly proliferate due to the limited immune response of patients with SARS-CoV-2, perhaps due to dysbiosis generated by the viral infection.


Assuntos
COVID-19 , Pneumonia , Humanos , SARS-CoV-2 , Colômbia/epidemiologia , Streptococcus pneumoniae
9.
Commun Med (Lond) ; 3(1): 97, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443390

RESUMO

BACKGROUND: The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere. METHODS: To better understand the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia. We performed Bayesian phylodynamic analyses to estimate the time of variants' introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures. RESULTS: Here, we detect a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the pandemic's start. We show that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation). CONCLUSIONS: Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions toward the emergence and circulation of novel SARS-CoV-2 variants.


Colombia reported its first COVID-19 case on 6th March 2020. By April 2022, the country had reported over 6 million infections and over 135,000 deaths. Here, we aim to understand how SARS-CoV-2, the virus that causes COVID-19, spread through Colombia over this time and how the predominant version of the virus (variant) changed over time. We found that there were multiple introductions of different variants from other countries into Colombia during the first two years of the pandemic. The Gamma variant was dominant earlier in 2021 but was replaced by the Delta variant. The Mu variant had the highest potential to be transmitted. Our findings provide valuable insights into the pandemic in Colombia and highlight the importance of continued surveillance of the virus to guide the public health response.

10.
Parasitol Res ; 122(8): 1747-1757, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37272974

RESUMO

Trypanosoma cruzi has a complex life cycle consisting of four morphological and distinct biological stages. Although some authors suggest that T. cruzi primarily follows clonal reproduction, recent genomic and transcriptomic studies indicate an unorthodox capacity for recombination. We aimed to estimate the differential gene expression of 10 meiosis/homologous recombination-related genes during the T. cruzi life cycle, including epimastigotes, under two different types of stress (oxidative stress and pH changes). We performed RT-qPCR tests using novel-designed primers to estimate the differential gene expression (∆Ct and ∆∆Ct) of nine genes (SPO11, HAP2, RAD50, MRN complex, BRCA2, DMC1, MND1, and RPA1) and RAD51, which was previously reported. Our results show basal expression of all genes during the life cycle, indicating their hypothetical role in several cellular processes but with specific signatures of differential gene expression during the life cycle (HAP2, RPA, RAD50, BRCA2, MND1, and DMC1) and oxidative stress (RPA, MRE11, NBS1, BRCA2, MND1, and RAD51). Additionally, we found that the MRN complex has an independent level of expression in T. cruzi, with profiles of MRE11 and NBS1 upregulated in some stages. Recent studies on other trypanosomatids have highlighted the influence of HAP2 and RPA in recombination and hybridization. If T. cruzi uses the same repertoire of genes, our findings could suggest that metacyclogenesis may be the putative step that the parasite uses to undergo recombination. Likewise, our study reveals the differential profiles of genes expressed in response to oxidative and pH stress. Further studies are necessary to confirm our findings and understand the recombination mechanism in T. cruzi.


Assuntos
Trypanosoma cruzi , Animais , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga , Meiose/genética , Estágios do Ciclo de Vida/genética
12.
Trop Med Infect Dis ; 7(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548700

RESUMO

Trypanosoma cruzi, the causal agent of Chagas disease, is mainly transmitted by insects of the Triatominae subfamily. In Colombia, there are 26 triatomine species, and 16 of them are naturally infected with the parasite. The parasite loads of naturally infected vectors can be significant in targeting specific species that can affect the epidemiology of the disease. Studying their ecology and behavior is vital to understand their role in T. cruzi transmission dynamics. We evaluated the parasite loads of 182 field-collected triatomines corresponding to 10 species in 13 departments across Colombia. We standardized a methodology to quantify T. cruzi DNA in these insects. We obtained a LOD (limit of detection) of 3.05 p-eq/mL. The 82% of triatomines we evaluated were positive for T. cruzi infection, with loads ranging from hundreds to millions of equivalent parasites per milliliter. Panstrongylus geniculatus, Rhodnius prolixus, and Triatoma dimidiata were the species with the highest loads of T. cruzi; however, other species whose role as vectors is still unknown were also found with high loads of parasites. Our results suggest the relevance of secondary species for T. cruzi transmission in Colombia. We hope our data can help improve entomological surveillance and vector control programs in the country and the region.

13.
Microbiol Spectr ; 10(5): e0173622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069609

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole-genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA and Bogotá, Colombia (September 2, 2020 to March 2, 2022). We demonstrated almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, and Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlighted distinct target patterns that could be utilized to identify variants not yet defined on the panel, including the Omicron BA.2 and other sublineages. These findings exemplified the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. IMPORTANCE The continued circulation of SARS-CoV-2 amid limited surveillance efforts and inconsistent vaccination of populations has resulted in the emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to informing diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlighted the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated from September 2, 2020 to March 2, 2022 among patients seeking care in our health systems. This assay demonstrated variant-specific signatures of nucleotide/amino acid polymorphisms and underscored its utility for the detection of contemporary and emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Espectrometria de Massas , RNA , Nucleotídeos , Aminoácidos
14.
PLoS Negl Trop Dis ; 16(7): e0010534, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816541

RESUMO

Chagas disease is considered a public health issue in Colombia, where many regions are endemic. Triatoma dimidiata is an important vector after Rhodnius prolixus, and it is gaining importance in Boyacá, eastern Colombia. Following the recent elimination of R. prolixus in the region, it is pivotal to understand the behavior of T. dimidiata and the transmission dynamics of T. cruzi. We used qPCR and Next Generation Sequencing (NGS) to evaluate T. cruzi infection, parasite load, feeding profiles, and T. cruzi genotyping for T. dimidiata specimens collected in nine municipalities in Boyacá and explored T. dimidiata population genetics. We found that T. dimidiata populations are composed by a single population with similar genetic characteristics that present infection rates up to 70%, high parasite loads up to 1.46 × 109 parasite-equivalents/mL, a feeding behavior that comprises at least 17 domestic, synanthropic and sylvatic species, and a wide diversity of TcI genotypes even within a single specimen. These results imply that T. dimidiata behavior is similar to other successful vectors, having a wide variety of blood sources and contributing to the circulation of different genotypes of the parasite, highlighting its importance for T. cruzi transmission and risk for humans. In the light of the elimination of R. prolixus in Boyacá and the results we found, we suggest that T. dimidiata should become a new target for vector control programs. We hope this study provides enough information to enhance surveillance programs and a future effective interruption of T. cruzi vector transmission in endemic regions.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Colômbia/epidemiologia , Estruturas Genéticas , Humanos , Triatoma/genética , Triatoma/parasitologia , Trypanosoma cruzi/genética
15.
Travel Med Infect Dis ; 49: 102402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840078

RESUMO

Monkeypox is a zoonotic disease with clinical manifestations similar to smallpox in humans. Since May 13, 2022, an increasing number of suspected and confirmed cases have been reported, affecting non-endemic regions across the globe. More strikingly, reports from the current outbreak reveal unique aspects regarding transmission dynamics and an unprecedented, rapidly expanding and sustained community transmission. As demonstrated through the still-ongoing COVID-19 pandemic, genomic surveillance has been an essential resource for monitoring and tracking the evolution of pathogens of public health relevance. Herein, we performed a phylogenomic analysis of available Monkeypox virus (MPXV) genomes to determine their evolution and diversity. Our analysis revealed that all MPXV genomes grouped into three monophyletic clades: two previously characterized clades and a newly emerging clade harboring genomes from the ongoing 2022 multi-country outbreak with 286 genomes comprising the hMPXV-1A clade and the newly classified lineages: A.1 (n = 6), A.1.1 (n = 1), A.2 (n = 3) and B.1 (n = 262), where lineage B.1 includes all MPXV genomes from the 2022 outbreak. Finally, it was estimated that B.1 lineage of this clade emerged in Europe on 03/02/2022 [95%CI = 11/13/2021 to 05/10/2022]. The exceptional surge of cases and the broader geographical expansion suggest multifactorial factors as drivers of the current outbreak dynamics. Such factors may include the cessation of smallpox vaccination and its potential spread across particular networks. Integrating pertinent epidemiological information with genomic surveillance information will help generate real-time data to help implement adequate preventive and control measures by optimizing public health decisions to mitigate this outbreak.


Assuntos
COVID-19 , Varíola , Surtos de Doenças , Humanos , Vírus da Varíola dos Macacos/genética , Pandemias , Filogenia
16.
medRxiv ; 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35665019

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole viral genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY ® SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA as well as in Bogotá, Colombia (September 2, 2020 - March 2, 2022). We demonstrate almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlight distinct target patterns that can be utilized to identify variants not yet defined on the panel including the Omicron BA.2 and other sublineages. These findings exemplify the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. Importance: The continued circulation of SARS-CoV-2 amidst limited surveillance efforts and inconsistent vaccination of populations has resulted in emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to inform diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlight the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated at over September 2, 2020 - March 2, 2022 among patients seeking care at our health systems. This assay demonstrates variant-specific signatures of nucleotide/amino acid polymorphisms and underscores its utility for detection of contemporary and emerging SARS-CoV-2 variants of concern.

17.
BMC Infect Dis ; 22(1): 575, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761219

RESUMO

BACKGROUND: Convalescent plasma (CP) has been widely used to treat COVID-19 and is under study. However, the variability in the current clinical trials has averted its wide use in the current pandemic. We aimed to evaluate the safety and efficacy of CP in severe coronavirus disease 2019 (COVID-19) in the early stages of the disease. METHODS: A randomized controlled clinical study was conducted on 101 patients admitted to the hospital with confirmed severe COVID-19. Most participants had less than 14 days from symptoms onset and less than seven days from hospitalization. Fifty patients were assigned to receive CP plus standard therapy (ST), and 51 were assigned to receive ST alone. Participants in the CP arm received two doses of 250 mL each, transfused 24 h apart. All transfused plasma was obtained from "super donors" that fulfilled the following criteria: titers of anti-SARS-CoV-2 S1 IgG ≥ 1:3200 and IgA ≥ 1:800 antibodies. The effect of transfused anti-IFN antibodies and the SARS-CoV-2 variants at the entry of the study on the overall CP efficacy was evaluated. The primary outcomes were the reduction in viral load and the increase in IgG and IgA antibodies at 28 days of follow-up. The per-protocol analysis included 91 patients. RESULTS: An early but transient increase in IgG anti-S1-SARS-CoV-2 antibody levels at day 4 post-transfusion was observed (Estimated difference [ED], - 1.36; 95% CI, - 2.33 to - 0.39; P = 0.04). However, CP was not associated with viral load reduction in any of the points evaluated. Analysis of secondary outcomes revealed that those patients in the CP arm disclosed a shorter time to discharge (ED adjusted for mortality, 3.1 days; 95% CI, 0.20 to 5.94; P = 0.0361) or a reduction of 2 points on the WHO scale when compared with the ST group (HR adjusted for mortality, 1.6; 95% CI, 1.03 to 2.5; P = 0.0376). There were no benefits from CP on the rates of intensive care unit admission (HR, 0.82; 95% CI, 0.35 to 1.9; P = 0.6399), mechanical ventilation (HR, 0.66; 95% CI, 0.25 to 1.7; P = 0.4039), or mortality (HR, 3.2; 95% CI, 0.64 to 16; P = 0.1584). Anti-IFN antibodies and SARS-CoV-2 variants did not influence these results. CONCLUSION: CP was not associated with viral load reduction, despite the early increase in IgG anti-SARS-CoV-2 antibodies. However, CP is safe and could be a therapeutic option to reduce the hospital length of stay. Trial registration NCT04332835.


Assuntos
COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Anticorpos Antivirais , Betacoronavirus , COVID-19/terapia , Humanos , Imunização Passiva , Imunoglobulina A , Imunoglobulina G/uso terapêutico , SARS-CoV-2 , Resultado do Tratamento , Soroterapia para COVID-19
18.
Viruses ; 14(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746705

RESUMO

Genomic surveillance of SARS-CoV-2 is one of the tools that provide genomic information on circulating variants. Given the recent emergence of the Omicron (B.1.1.529) variant, this tool has provided data about this lineage's genomic and epidemiological characteristics. However, in South America, this variant's arrival and genomic diversity are scarcely known. Therefore, this study determined the genomic diversity and phylogenetic relationships of 21,615 Omicron genomes available in public databases. We found that in South America, BA.1 (n = 15,449, 71%) and BA.1.1 (n = 6257, 29%) are the dominant sublineages, with several mutations that favor transmission and antibody evasion. In addition, these lineages showed cryptic transmission arriving on the continent in late September 2021. This event may have contributed to the dispersal of Omicron sublineages and the acquisition of new mutations. Considering the genomic and epidemiological characteristics of these lineages, especially those with a high number of mutations in their genome, it is important to conduct studies and surveillance on the dynamics of these lineages to identify the mechanisms of mutation acquisition and their impact on public health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , América do Sul/epidemiologia
19.
Int J Infect Dis ; 122: 310-312, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690365

RESUMO

Chagas disease is a complex zoonosis caused by Trypanosoma cruzi. The diagnosis of this infection is complex and molecular tools are suggested to detect the parasite in blood samples. A long-standing question arises in Chagas disease molecular diagnostics and is related to the feasibility of using epimastigotes in standard curves to quantify parasitic loads. Herein, we conducted experiments running standard curves with all the known life stages of T. cruzi. Our results indicate that regardless of the life stage employed, there are no statistically significant differences when calculating parasitic loads in blood samples. Our results have practical implications from a laboratory perspective in terms of the usability of epimastigotes to build standard curves for T. cruzi pan-stage assessment. Future studies are needed to further improve T. cruzi molecular diagnostic methods and enhance their impact in clinical practice.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/parasitologia , Humanos , Técnicas de Diagnóstico Molecular , Carga Parasitária/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trypanosoma cruzi/genética
20.
Mem Inst Oswaldo Cruz ; 117: e210375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544862

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus of zoonotic origin that can bind to ACE2 receptors on the cells of many wild and domestic mammals. Studies have shown that the virus can circulate among animals mutate, lead to animal-to-human zoonotic jump, and further onward spread between humans. Infection in pets is unusual, and there are few human-to-pet transmission reports worldwide. OBJECTIVE: To describe the SARS-CoV-2 infection in a domestic animal in Córdoba, Colombian Caribbean region. METHODS: A cross-sectional molecular surveillance study was carried out, oral and rectal swabs were taken from cats and dogs living with people diagnosed with coronavirus disease 2019 (COVID-19). RESULTS: SARS-CoV-2 was found in a cat living with a person with COVID-19. Genome sequencing showed that the B.1.111 lineage caused the infection in the cat. The owner's sample could not be sequenced. The lineage is predominant in Colombia, and this variant is characterised by the presence of the D614D and Q57H mutation. CONCLUSION: The present work is the first report of an infected cat with SARS-CoV-2 with whole-genome sequencing in Colombia. It highlights the importance of detecting SARS-CoV-2 mutations that could promote the transmissibility of this new coronavirus. There is still a significant information gap on human-to-cat-to-human infection; we encourage self-isolation measures between COVID-19 patients and companion animals. The findings of this study give a preliminary view of the current panorama of SARS-CoV-2 infection in animals in Colombia.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Gatos , Colômbia/epidemiologia , Estudos Transversais , Cães , Humanos , Mamíferos/genética , SARS-CoV-2/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...